Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production.

نویسندگان

  • Fabiana Passos
  • Ivet Ferrer
چکیده

Microalgal biomass grown in wastewater treatment raceway ponds may be valorised producing bioenergy through anaerobic digestion. However, pretreatment techniques seem to be necessary for enhancing microalgae methane yield. In this study, hydrothermal pretreatment was studied prior to batch and continuous reactors. The pretreatment increased organic matter solubilisation (8-13%), anaerobic digestion rate (30-90%) and final methane yield (17-39%) in batch tests. The highest increase was attained with the pretreatment at 130 °C for 15 min, which was attested in a laboratory-scale continuous reactor operated at a hydraulic retention time of 20 days with an average organic loading rate of 0.7 g VS/L·day. The methane yield increased from 0.12 to 0.17 L CH₄/g VS (41%) in the pretreated digester as compared to the control. Microscopic images of microalgal biomass showed that pretreated cells had unstructured organelles and disrupted cell wall external layer, which may enhance the hydrolysis. Indeed, images of the pretreated reactor digestate showed how cells were more degraded than in the control reactor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria

Utilizing cyanobacteria as a bioenergy resource is difficult due to the cost and energy consuming harvests of microalgal biomass. In this study, an auto-floating system was developed by increasing the photobiological H2 production in the heterocysts of filamentous cyanobacteria. An amount of 1.0 μM of diuron, which inhibited O2 production in cyanobacteria, resulted in a high rate of H2 producti...

متن کامل

Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production

Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was an...

متن کامل

Parallel Nutrient Removal and Biogas Production by Chlorella Vulgaris Cultures

In aquatic environments, eutrophication causes algal blooms, oxygen depletion, increase in undesired vegetation, loss of plant beds, fish, coral reef and other species. Eventually, the water bodies become unavailable to utilize for agricultural, recreational, industrial and drinking purposes. Discharge of domestic sewage introducing high levels of nutrients to water bodies is one of the main ca...

متن کامل

Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor

Anaerobic digestion (AD) is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on ...

متن کامل

Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation

BACKGROUND Microalgal biomass contains a high level of carbohydrates which can be biochemically converted to biofuels using state-of-the-art strategies that are almost always needed to employ a robust pretreatment on the biomass for enhanced energy production. In this study, we used an ultrasonic pretreatment to convert microalgal biomass (Scenedesmus obliquus YSW15) into feasible feedstock for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Water research

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2015